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1 Hull-White Short-Rate Model
We begin with the one-factor Hull-White model under the risk-neutral measure Q:
dry = (0(t) — ar,) dt + o dW2, (1)

where a is the mean-reversion speed, o is the short-rate volatility, and 6(¢) ensures the model
fits the initial yield curve.
Zero-coupon bond prices under Q admit the affine form

P(t,T) = A(t, T)exp( — B(t, T)re), (2)

with deterministic functions

1— efa(Tft)
B(t.T) = —————, (3)
A(t,T) = i’((%,jt;) exp (;—;(1 — e T=0)2(] — eQ“t)> . (4)

Since r; is Gaussian, the exponent —B(t,T)r, is Gaussian, and P(¢,T) is ezponential
Gaussian.

2 Motivation for the Forward Measure

Consider a European call option maturing at time ¢ on a zero-coupon bond maturing at
T > t, with payoff
max (P(¢,T) — K, 0). (5)

Instead of discounting the payoff using the money-market account, it is natural to use
the bond P(t,T) itself as numéraire. This leads to the T-forward measure QT, under which
any price divided by P(t,T) is a martingale.



3 Definition of the 7T-Forward Measure

Let B; = exp ( fg T ds> be the money-market numéraire. We change numéraire from B; to

the zero-coupon bond P(t,T').
The Radon—Nikodym derivative defining the T-forward measure is

dQ"| By P(t,T)
dQ | - BP0, T)
Under Q7
P, T
% is a martingale for all 7" > t.

This property is fundamental for deriving the closed-form bond option price.

4 Bond Dynamics Under the Forward Measure
From the affine bond-price formula,

P(t,T) = A(t, T)e BTt
and the Hull-White short-rate dynamics, It6’s lemma implies that under Q,

dP(t,T)

P(t,T) = pup(t)dt + op(t) thQ, op(t)=—cB(t,T).

(9)

When changing to QT, Girsanov’s theorem alters the drift but preserves the volatility.
Since P(t,T) becomes the numéraire, its discounted value is constant, and the bond-price

process has zero drift under Q7

dP(t,T)

S B T) AW
P(t,T) O-(’ )Wt

Thus the log-price satisfies
1
dln P(t,T) = —oB(t,T)dW < — 50 B(t.T)dt

Integrating from 0 to ¢ gives

t 1 t
lnP(t,T):lnP(O,T)—/ oB(s,T) de@T—E/ o*B(s, T)ds,
0 0

which is normally distributed.

(10)

(11)

(12)



5 Forward-Measure Variance

The variance of In P(¢t,T) under QT is

t
o3 :/ 0?B(s,T)* ds, (13)
0
which evaluates to )
0p = 55 (1= T2 (1 — 7). (14)

Thus P(t,T) is lognormally distributed under the T-forward measure.

6 Closed-Form Bond Option Price

Since the payoff is the expectation of a lognormal variable under Q7 we obtain a Black-style

formula. Define
P(0,T) 1
1n<KP(o,t)> +30%
d; =

ap

s d2 = d1 — Oop. (15)
Then the European call price is

with N(-) the standard normal CDF.

7 Summary

The steps for using the forward measure in the Hull-White model are:
1. Start with the short-rate SDE under Q.
2. Use the zero-coupon bond P(¢,T') as the numéraire.
3. Change measure using the Radon—Nikodym derivative.
4. Obtain deterministic bond volatility under Q.
5. Deduce that the bond price is lognormal at option maturity.
6. Use the Black formula to compute the closed-form bond option price.

The affine structure of the Hull-White model makes each of these steps explicit and
analytically tractable.



8 Hull-White Model Under the Risk-Neutral Measure

The one-factor Hull-White short-rate model under the risk-neutral measure Q is

dry = (0(t) — ary) dt + o dW2,

(17)

where a is the mean-reversion speed, o is the volatility, and 6(¢) is chosen such that the

model fits the initial term structure.
The money-market numéraire is

t
B, :exp</ 'r’sds) .
0

Zero-coupon bond prices are affine in the short rate:

P(t,T) = A(t,T)exp(—B(t, T)r),

with
1_€—a(T—t)
Bt,T)= —F—
(4,1) = ————
P(0,T) o?
A(t,T) = d T (1 = em(T=t)\2(1 _ g2aty )
1) =500 eXp(4a3( ¢ )1 —e)

9 Motivation for the T-Forward Measure

(18)

(19)

(20)

(21)

For pricing a European option with maturity ¢ on a zero-coupon bond with maturity 7" > t,

it is natural to rewrite the payoff

max(P(t,T) — K, 0)

in terms of a measure under which the bond P(¢,T") serves as the numéraire.

The T-forward measure QT is defined so that

P, T
P, T)

is a martingale under Q7 for all 7" > t.

10 Definition of the Measure Change

We change numéraire from B, to P(t,7). The Radon-Nikodym derivative is

P(t,T)

— POT) :
dQ ;D B, P(0,T)

(22)

(23)

This ensures that P(t,T) becomes the numéraire under Q7 exactly as B; was the

numéraire under Q.



11 Brownian Motion Under the 7T-Forward Measure

Let W2 be the Brownian motion under Q in the short-rate SDE (L7). By Girsanov’s theorem,
the Brownian motion changes according to
AW @ = aw @ + )\ dt, (24)

where \; is the market price of risk associated with the new numéraire.
To compute ), differentiate the bond price:
P(t,T) = A(t,T)exp(—B(t, T)r).
Applying Ito’s lemma yields the volatility of the bond under Q:
dP(t,T)
—— 2 = up(t)dt — oB(t,T)dW]. 25
P(t, T) :LLP( ) 9 ( ) ) t ( )
Because the drift must be zero under the measure where P(¢,7T') is the numéraire, Gir-
sanov’s theorem implies

A\ = —0B(t,T). (26)
Thus under the T-forward measure,

dw® = dw® — oB(¢,T) dt. (27)

12 Bond Dynamics Under the T-Forward Measure

Under Q7, the bond price volatility is unchanged, but the drift disappears:

%L:’TT)) = —oB(t,T)dW<". (28)
Hence the log-price satisfies
dInP(t,T) = —cB(t,T)dW2" — %UQB(t,T)th. (29)
Integrating gives
InP(t,T) =In P(0,T) — /Ot oB(s, T)dW@" — %/Ot o?B(s,T)? ds. (30)

Because the integral of B(s,T) is deterministic, In P(¢,T) is normally distributed.

13 Forward-Measure Variance

The variance of In P(t,T) under Q7 is explicitly

¢
op :/ 0?B(s,T)* ds, (31)
0
which evaluates to )
o2 = 2%(1 —emdT=0Y2(] — g~20t), (32)

Thus P(t,T) is lognormal at time ¢ under Q7 enabling closed-form bond option pricing.

5



14 Jamshidian’s Trick

Consider a European option on a coupon bond with maturity S and coupons {¢;} at times

{13}
+
H= (Z ¢ P(T,T;) — K) .
Jamshidian’s theorem states:

e Under a one-factor short-rate model (such as Hull-White),

e There exists a unique short rate level r solving

> P T 0=

e The option price decomposes into a sum of zero-coupon bond options:

V;‘, = Z C; CZCB(t; T7 7—11'7 Kz)a

where each strike K is
K; = P"W(T T;: )

14.1 Why the Trick Works

Since the one-factor short rate determines all bond prices through
P(T,T;) = A(T, T;)e” P10,

the coupon bond payoff is a monotone function of rp:

Z ¢;P(T,T;) 1is strictly decreasing in 7.

%

Thus there is a unique r such that the coupon bond price equals K. The event

> aP(T,T;) > K

is equivalent to
re <1

Hence the payoftf decomposes into

H=> ¢ (P(TT)-K)".

Since each P(T,T;) is lognormal under the T-forward measure, each term is a standard
zero-coupon bond option.



15 Final Pricing Formula
The price at time ¢ is

V, = P(t,T) Z Egr [(P(T,T) — K)V | ).

Each expectation is given by the Hull-White bond option closed form:
C*B(t; T, Ty, K;) = P(t, T;)N(dy) — K; P(t,T)N(dy),

where

P(t,Ti) 1 2
hl(KiP(t,T)) + 30T,
dip =

O-t ’ T7T1

)

and o, 1, is the forward-measure bond volatility.

16 Conclusion

The T-forward measure arises naturally in the Hull-White model by choosing the zero-
coupon bond P(t,T) as the numéraire. The Radon-Nikodym derivative changes the
measure from Q to Q7, the Brownian motion shifts accordingly, and the resulting bond
dynamics have zero drift and deterministic volatility. This yields a lognormal bond price
under QT which is the basis for the closed-form European bond option formula.
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